Engineering craniofacial scaffolds.

نویسندگان

  • S J Hollister
  • C Y Lin
  • E Saito
  • R D Schek
  • J M Taboas
  • J M Williams
  • B Partee
  • C L Flanagan
  • A Diggs
  • E N Wilke
  • G H Van Lenthe
  • R Müller
  • T Wirtz
  • S Das
  • S E Feinberg
  • P H Krebsbach
چکیده

OBJECTIVE To develop an integrated approach for engineering craniofacial scaffolds and to demonstrate that these engineered scaffolds would have mechanical properties in the range of craniofacial tissue and support bone regeneration for craniofacial reconstruction. EXPERIMENTAL VARIABLE Scaffold architecture designed to achieve desired elasticity and permeability. Scaffold external shape designed to match craniofacial anatomy. OUTCOME MEASURE Final fabricated biomaterial scaffolds. Compressive mechanical modulus and strength. Bone regeneration as measured by micro-CT scanning, mechanical testing and histology. SETTING Departments of Biomedical Engineering, Oral/Maxillofacial Surgery, and Oral Medicine, Pathology and Oncology at the University of Michigan. RESULTS Results showed that the design/fabrication approach could create scaffolds with designed porous architecture to match craniofacial anatomy. These scaffolds could be fabricated from a wide range of biomaterials, including titanium, degradable polymers, and degradable calcium phosphate ceramics. Mechanical tests showed that fabricated scaffolds had compressive modulus ranging 50 to 2900 MPa and compressive strength ranging from 2 to over 56 MPa, within the range of human craniofacial trabecular bone. In vivo testing of designed scaffolds showed that they could support bone regeneration via delivery of BMP-7 transduced human gingival fibroblasts in a mouse model. Designed hydroxyapatite scaffolds with pore diameters ranging from 400 to 1200 microns were implanted in minipig mandibular defects for 6 and 18 weeks. Results showed substantial bone ingrowth (between 40 and 50% at 6 weeks, between 70 and 80% at 18 weeks) for all scaffolds, with no significant difference based on pore diameter. CONCLUSION Integrated image-based design and solid free-form fabrication can create scaffolds that attain desired elasticity and permeability while fitting any 3D craniofacial defect. The scaffolds could be manufactured from degradable polymers, calcium phosphate ceramics and titanium. The designed scaffolds supported significant bone regeneration for all pore sizes ranging from 300 to 1200 microns. These results suggest that designed scaffolds are clinically applicable for complex craniofacial reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds

Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been...

متن کامل

Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications.

It is sometimes necessary to form highly porous polymeric tissue engineering scaffolds into various shapes and sizes. Ideally, in these cases, the three-dimensional morphology should be maintained to the outer margins of the scaffold so as to provide optimum function. Many biodegradable polymeric scaffolds are soft and delicate, however, and their poor physical strength presents a challenge whe...

متن کامل

Tissue engineering scaffolds for the regeneration of craniofacial bone.

Current strategies for skeletal regeneration involve the use of autogenous and allogenic bone grafts that may not always be available or safe to use. One alternative is to develop materials for use as scaffolds for the tissue engineering of bone. We created architecturally nanofibrous scaffolds using the electrospinning technique. These calcium phosphate- based materials are porous, have a larg...

متن کامل

Dental pulp tissue engineering.

Dental pulp is a highly specialized mesenchymal tissue that has a limited regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regen...

متن کامل

Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.

Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Orthodontics & craniofacial research

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2005